JOHN EDMONDSON HIGH SCHOOL
Year 11 Mathematics Advanced
Assessment Task 2
Term 22024

Assignment Questions: Weighting 30\%

Date assignment given to student: Wednesday $22^{\text {nd }}$ May 2024
This assignment must be submitted with your full name clearly written on all pages.

1.	What is the value of $\frac{5.25-0.45}{1.24+4.5}$ correct to 2 significant figures?	$\mathbf{1}$ mark
2.	Calculate $\sqrt{\frac{3.7^{5}-1}{4.31+7.25}}$ correct to 2 decimal places.	$\mathbf{1}$ mark
3.	The distance from Sydney to Melbourne is 99500000 cm. Write this number in scientific notation in metres.	$\mathbf{1}$ mark
4.	Find integers a and b such that $\frac{2}{7-\sqrt{5}}=\frac{a+b \sqrt{5}}{22}$	$\mathbf{2}$ marks
5.	Express $\frac{1}{\sqrt{3}-2}$ in the form $a \sqrt{3}+b$	$\mathbf{2}$ marks
6.	Simplify $3 \sqrt{2}+2 \sqrt{98}$	$\mathbf{2}$ marks
7.	Write $\frac{2}{\sqrt[5]{(3 p-1)}}{ }^{8}$ with fractional and / or negative indices.	$\mathbf{1}$ mark

8.	Simplify: $\frac{2^{n}-2^{n-1}}{2^{n}+2^{n+1}}$	2 marks
9.	Factorize: $x a+3 x-2 a-6$	2 marks
10.	The sides of a right-angled triangle are $(x+1) \mathrm{cm},(x+3) \mathrm{cm}$ and $(x+5) c m$. Find the length of each side by using Pythagoras' Theorem. Show all working.	3 marks
11.	Factorize fully: $a^{2}-4 a+4-9 b^{2}$	2 marks
12.	Simplify $\frac{2}{x-3} \times \frac{x^{2}-2 x-3}{10}$	2 marks
13.	Solve $-3<5 y+2 \leq 17$ and graph the solution on a number line	3 marks
14.	Solve $2^{2 x+1}=16$	2 marks
15.	Solve $9^{3 x+4}=1$	2 marks
16.	Solve $\|8 y-9\|=5 y-7$	3 marks
17.	Use the quadratic formula to solve $4 x^{2}-2 x-3=0$ expressing the answer in surd form.	2 marks
18.	Solve simultaneously: $\begin{aligned} & a^{2}-b^{2}=25 \\ & a+b=3 \end{aligned}$	3 marks
19.	The function $f(x)$ is defined as follows: $f(x)=\left\{\begin{array}{lr} x+1, & -2 \leq x<3 \\ 4, & 3 \leq x \leq 5 \end{array}\right.$ (i) Find $f(-2)+f(2)-f(5)$ (ii) Draw a neat sketch of the function for the given domain	$\begin{aligned} & 1 \text { mark } \\ & 2 \text { marks } \end{aligned}$
20.	Solve $\left(\frac{1}{2}\right)^{x+2}=\sqrt[3]{4}$	3 marks
21.	Show whether $f(x)=2 x-3 x^{3}$ is an odd function, an even function or neither.	2 marks

22.	Sketch $y=\frac{1}{x-3}+2$ showing all intercepts, asymptotes and state its domain and range.	4 marks
23.	Sketch $y=\sqrt{4-x^{2}}$ and state its domain and range.	3 marks
24.	Find the centre and radius of the circle given by $x^{2}+6 x+y^{2}-16=0$	2 marks
25.	State the domain and range for $x^{2}+6 x+y^{2}-16=0$	2 mark
26.	Consider the function given by $y=x^{2}-2 x-3$ (i) Draw a neat sketch of the curve $y=x^{2}-2 x-3$ showing the x and y intercepts. (ii) Find the axis of symmetry and state the vertex. Show this on your graph.	2 marks 2 marks
27.	Find the values of k for which the equation $x^{2}-7 x+k=0$ has real roots.	2 marks
28.	(i) Determine the discriminant for the quadratic equation $x^{2}+(k+2) x+4=0$ (ii) For what values of k does the equation have real roots	1 mark 1 mark
29.	Solve $4^{x}=12\left(2^{x}\right)-32$	3 marks
30.	The points $A(2,0), B(8,4), C(4,6)$ and $D\left(x_{1}, y_{1}\right)$ form the 4 vertices of a parallelogram (i) Draw a number plane and mark $A, B, \& C$ on it. (ii) Find the gradient of line $A B$ (iii) Show that the equation of the line l parallel to $A B$ and going through C is $2 x-3 y+10=0$ (iv) If the equation of the line p through A parallel to $B C$ is $\boldsymbol{x}+2 \boldsymbol{y}-2=\mathbf{0}$, find the point $D\left(x_{1}, y_{1}\right)$ the intersection of the lines l and p. Mark this point on your diagram.	1 mark 1 mark 2 marks 2 marks

31. In the diagram below $A B C O$ is a trapezium with $A B \| O C$.

(i) Find the coordinates of the midpoint of $B C$.
(ii) Calculate the exact length of $O C$.
(iii) Find the gradient of $O C$.
(iv) Find the size of $\angle A O C$, correct to the nearest degree.
(v) Show that the equation of the line $A B$ is $x-2 y+6=0$.
(vi) Find the coordinates of A.

End of Assignment

