

JOHN EDMONDSON HIGH SCHOOL Assessment Notification

Faculty: Science Course: Chemistry Year: HSC

Assessment Task: Research Task and In-Class Questions

Assessment Weighting: 20% Due: Term 4, Week 7, 20/11/2023

Task Type: Hand-in Task oxtimes In Class oxtimes

Outcomes assessed (NESA)

- develops and evaluates questions and hypotheses for scientific investigation CH11/12-1
- designs and evaluates investigations in order to obtain primary and secondary data and information CH11/12-2
- conducts investigations to collect valid and reliable primary and secondary data and information CH11/12-3
- selects and processes appropriate qualitative and quantitative data and information using a range of appropriate media CH11/12-4
- analyses and evaluates primary and secondary data and information CH11/12-5
- solves scientific problems using primary and secondary data, critical thinking skills and scientific processes CH11/12-6
- Communicates scientific understanding using suitable language and terminology for a specific audience or purpose CH11/12-7
- Analyses the structure of, and predicts reactions involving, carbon compounds CH12-14
- Describes and evaluates chemical systems used to design and analyse chemical processes CH12-15

Syllabus covered: Module 7: Organic Chemistry Polymers

Inquiry question: What are the properties and uses of polymers?

Students:

• model and compare the structure, properties and uses of addition polymers of ethylene and related monomers, for example:

- polyethylene (PE)
- polyvinyl chloride (PVC)
- polystyrene (PS)
- polytetrafluoroethylene (PTFE) (ACSCH136)
- model and compare the structure, properties and uses of condensation polymers, for example:
- nylon
- polyesters

Hydrocarbons

Inquiry question: How can hydrocarbons be classified based on their structure and reactivity?

• Examine the environmental, economic, and sociocultural implications of obtaining and using hydrocarbons from the Earth (CIF10.4)

Alcohols

Inquiry question: How can alcohols be produced, and what are their properties?

- Compare and contrast fuels from organic sources to biofuels, including ethanol (CIF 11.6)
- investigate the production of alcohols, including:
 fermentation

Module 8: Chemical Synthesis and Design

Inquiry question: What are the implications for society of chemical synthesis and design?

- evaluate the factors that need to be considered when designing a chemical synthesis process, including but not limited to:
 - availability of reagents
 - reaction conditions
 - yield and purity
 - industrial uses (fuels)
 - environmental, social and economic issues

Questions regarding this inquiry question will be about the industrial production of ethanol.

Task Description/Overview

TOTAL MARKS: 60

Part 1: Research, summary, and bibliography (10 marks). Bibliography to be submitted on Canvas by 8:25am. Bring the research summary to class November 20. Part 2: In-class questions (50 marks) using the research summaries.

Detailed Assessment Task Description

Research and in-class questions

Task: Secondary source research and in-class questions

For this activity, you will research and summarise ALL the syllabus points covered above.

Your summary should include, but not be limited to:

- Diagrams/drawings/models of ALL addition and condensation polymers mentioned in the syllabus
- Chemical equations representing the production of addition polymerisation process and the condensation polymerisation process.
- The environmental, economic, and sociocultural implications of obtaining and using hydrocarbons from the earth.
- Relevant chemical formula for the hydrocarbons obtained from crude oil and equations representing any chemical reactions hydrocarbons from the earth undergo (e.g., combustion)
- Compare and contrast fossil fuels with biofuels including ethanol and at least one other biofuel (e.g. biodiesel)
- Relevant equations illustrating the production and use of biofuels.
- Advantages and disadvantages of different types of fuels.
- An evaluation of the factors that need to be considered when designing a chemical synthesis. process to produce ethanol by fermentation.
- Quantitative data to support your argument.

Your summary can be up to 4, double-sided, handwritten A4 pages. This summary can be brought into class to answer the in class questions.

You need to complete a bibliography of at least 9 different sources. This is to be submitted on Canvas by 8:25am.

Marking Criteria

Part 1: 10 Marks At least 9 resources referenced correctly according to the APA 7th edition referencing system, <u>https://jedmondson-h.schools.nsw.gov.au/assessment/writing-a-bibliography.html</u>

Submit on Canvas by 8:25am.

Part 2: 50 Marks. 10 multiple choice questions (10 marks), 40 marks short answers and extended responses. Use the research summary to complete these questions in class.

Assessment Criteria		
Grade	Description	Mark Range
Outstanding (O)	The student has an extensive knowledge and understanding of the content and can readily apply this knowledge. In addition, the student has achieved a very high level of competence in the processes and skills and can apply these skills to new situations.	84.5-100
High (H)	The student has a thorough knowledge and understanding of the content and a high level of competence in the processes and skills. In addition, the student is able to apply this knowledge and these skills to most situations.	69.5-84%
Sound (S)	The student has a sound knowledge and understanding of the content and has achieved a good level of competence in the processes and skills.	49.5- 69%
Basic (B)	The student has a basic knowledge and understanding of the content and has achieved a basic level of competence in the processes and skills	27.5-49%
Limited (L)	The student has an elementary knowledge and understanding in a few areas of the content and still requires further work to achieve competence in the processes and skills.	0-27%

Satisfactory completion of courses

- A course has been satisfactorily completed, when the student has:Followed the course developed/endorsed by the NSW Educational Standards Authority (NESA)
- Applied himself/herself with diligence and sustained effort to the set tasks and experiences provided in the course.
- Achieved some or all of the course outcomes